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We have investigated how a neural network representation of intermolecular potential functions can be used
to elevate some of the problems commonly encountered during fitting and application of analytical potential
functions in computer simulations. For this purpose we applied feed-forward networks of various sizes to
reproduce the three-body interaction energies in the system H2O-Al3+-H2O. In this highly polarizable system
the three-body interaction terms are necessary for an accurate description of the system, and it proved difficult
to fit an analytical function to them. Subsequently we performed Monte Carlo simulations on an Al3+ ion
dissolved in water and compared the results obtained using the neural network type potential function with
those using a conventional analytical potential. The performance and results of our calculations lead to the
conclusion that, for suitable systems, the advantages of a neural network type representation of potential
functions as a model-independent and “semiautomatic” potential function outweigh the disadvantages in
computing speed and lack of interpretability.

1. Introduction

It is now rather commonly appreciated that so-called “artificial
neural networks” (which will further be abbreviated as NNs)
can be useful in various contexts. Among the most important
are storage and interpolation of data as well as pattern
recognition in the sense of extracting important features from
sets of data. The interest in NNs has increased much during
the past decade, although the concept has been known for 50
years.1,2

Examples of applications in the field of chemistry include
medical chemistry,3 electrostatic potential comparison,4,5 and,
generally, structure-activity relationship studies of various
kinds.4 Whereas in most such applications semiquantitative
results are sufficient and a very accurate reproduction or
prediction of data is not necessary, the simple mathematical
structure of feed-forward NNs also makes them a suitable
alternative for classical function approximation.
Furthermore, due to their relatively simple structure and their

universal applicability, NNs can be implemented in computer
hardware, and specialized NN coprocessors are available (this
is a situation similar to that in the case of digital signal
processing). A second technical aspect is that they are very
well suited for parallel processing.
The conceptual and practical importance of the potential

energy surface (PES) within the framework of “Born-Oppen-
heimer chemistry” is well established. In the following, we
will use the terms “potential energy surface” and “potential
energy function” interchangeably. PESs are needed, for ex-
ample, as input for molecular mechanics, molecular dynamics,
and Monte-Carlo simulations. The feasibility of performing
such simulations critically depends on an accurate and fast
representation of the system energy as a function of the atomic
or molecular coordinates. In the many cases where it is not
necessary or feasible to calculate energies (or forces) by quantum

chemical means, the potential energy surface is commonly
approximated by analytical potential energy formulas. These
have usually been obtained by parametrization, either toward
quantum chemically calculated energies or toward different
experimental data, and should allow fast and accurate retrieval
and interpolation of the energies and forces. In this sense,
analytical potential functions can be viewed simply as a means
of storing and retrieving data and to map discrete data points
into continuous functions, as can also be accomplished, for
example, via interpolation from look-up tables or via splines
or Bezier curves.
It often turns out that the fitting procedure to construct such

analytical functions is a labor-intensive and cumbersome task
which requires a lot of experience since, in a real chemical
system, a multitude of bonding effects interact to form the
potential surface. From a more formal point of view, the total
energy of a molecular system can be expressed as a many-body
expansion:

where, for example, the pair and three-body interactions are

The total energy is the sum of one-, two-, three- up to many-
body energy terms.E(1) denotes the energy of the monomer,
andE(2) andE(3) are the two-body and three-body parts of the
potential function. In some cases, the nonadditive parts of the
interaction potential are relatively small and the sum may be
truncated after the second term. This is often done, for example,
in simulation studies of water (e.g. refs 15, 16) and other simple
liquids and of biomolecules. For many systems, however, the
nonadditive contribution toEtot is more important and should
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not be neglected. This would be the case, for example, in
systems with charged particles which polarize their neighbors
and may even transfer charge to them. The resulting change
in the interaction between the neighbors means that the additivity
approximation breaks down. An example would be a small,
highly charged cation hydrated by water molecules. In such a
case, simulations using potential functions with only pair
interaction terms may lead to erroneous hydration numbers and
other qualitatively wrong properties. These effects were, for
example, studied by Probst et al. for the hydration of the Be2+

ion.8,9

It often turns out to be comparatively easy to set up functions
that describe the pairwise interactions between molecules.
These functions are frequently written in terms of sums of one-
dimensional functions of the interatomic distances. It is
generally much more difficult to find an analytical function that
fits all occurring types of three-body interactions in the system.
We therefore decided to experiment with a neural network
approach, in contrast to conventional fitting procedures, for the
purpose of reproducing the three-body terms in the water-ion
interactions in an aqueous ionic system, namely, Al3+(aq).
The main purpose of this paper is to introduce the methodol-

ogy and to demonstrate its applicability. Nevertheless, results
of MC simulations with the approach described here are also
presented and discussed briefly, since, to our knowledge,
simulation studies on Al3+(aq) have not yet been published.

2. Method

In this paper we use a neural network to construct three-
body interaction energy potential functions for Al3+-water
interactions. Compared to the normal fitting approach, the
following similarities and differences can be noted.
Instead of “inventing” a potential energy function, one decides

on the size of the network. The network, in principle, can fit
the data as accurately as desired, but problems regarding
spurious minima and other artifacts are still possible. One has
to abandon the physical interpretability of the various terms in
the potential energy expression (for example those with different
powers of the distance) because due to the structure of a neural
network, there are no separable terms present.
The representation of the numerical values by a neural

network consisting of many (tansigmoidal) transfer functions,
as discussed below, normally needs more computational effort
than the use of an analytical potential function.
In our case, the output from the network is the interaction

energyE of the system or rather its three-body part, and the
input consists of the interatomic distances. The functional form
is of the shapef(∑(ai + bixi)), wherea and b are network-
specific parameters andxj ({x1, x2, ..., xn}) the input vector or
the output of other so-called transfer functionsf, which build
up the hidden layers inside the network.
Network Architecture. The network architecture5,10defines

how the different layers are connected to each other. It is, in
our case, “feed-forward”; that is, the whole network can simply
be expressed as one nested functionE ) f(∑(ai + bif(...))), as
is visualized in Figure 1. The functionsf(x), wherex is∑(ai +
bixi), are in most cases “S-shaped” functions which mapx into
the ranges-1 e f(x) e +1 or 0e f(x) e +1:

Alternatively they can also be simple scaling functions:

For network training we used the back-propagation algorithm.
The generalized delta-rule for gradient descent was em-
ployed.11,12 An adaptive learning rateη was used in order to
improve the speed of the standard back-propagation algorithm.
For all back-propagation calculations, the network parameters

were set as follows. The initial learning rateη was set to 10-5;
the momentum constantµ was 0.95. The learning increment
and decrement factors were 1.05 and 0.70, respectively. The
initial weights and biases were generated using the Nguyen-
Widrow initial conditions:13

Here j is the index of the current neuron, andi is the index of
the current input value (1-15 in our case). Wij

old is the
combined randomly generated weight and bias matrix, which
consists of normalized row vectors.

3. The System

Here we will study the interaction of Al3+ with water by
means of Monte Carlo simulations, using the neural network
for the construction of the H2O-Al3+-H2O three-body interac-
tions and a simple analytical potential function for all two-body
interactions in the system. Other three-body and higher-order
terms were neglected. The Al3+-H2O interaction is so strong
that computer simulations with only pairwise additive forces
are inaccurate. In an aqueous Al3+ solution, the interaction of
Al3+ with two water molecules mainly occurs for two different
types of geometrical conformations. The first conformation type
corresponds to one water molecule residing in the first hydration
shell (according to the Al3+-H2O distance) of the cation with
the other water molecule in either the first or the second shell
and the O-Al-O angle being larger than 50°. The three-body
interaction is here repulsive for nearly all chemically feasible
orientations of the water molecules. The value of this interaction
depends then mainly on the O-Al-O angle and on both ion-
oxygen distances. We will call these conformationstype 1.14

Figure 1. Architecture of the feed-forward network. The input consists
of a vector of interatomic distances which are processed to calculate
the energy.

f(S) ) eS- e-S

eS+ e-S or f(S) ) 1

1+ e-S (4)

f(S) ) kS (5)

Wij
new) Wij

old0.7ixj (6)

Intermolecular Potential Functions J. Phys. Chem. A, Vol. 102, No. 24, 19984597



If, in contrast, the O-Al-O angle is less than about 50° and
one water is located in the first and one in the second hydration
shell, we call these conformationstype 2.14 Both types of
conformations are shown in Figure 2. Fortype 2conformations,
the three-body (as well as, of course, the two-body) interaction
depends strongly on the relative orientation of the water
molecules. The three-body interaction becomes attractive for
some orientations, due to the cooperative hydrogen bonding
between the water molecules. It is thus necessary to include
hydrogen-hydrogen and hydrogen-oxygen interaction terms
in the potential energy calculation. Fortype 1conformations,
inclusion of the relative orientation of the water molecules in
the three-body potential is less important.
Recently Bakker et al.14 developed a function to reproduce

the repulsive O-Al-O three-body energies of thetype 1
conformations by fitting the parameters to about 4500type 1
conformations:

The exponential part takes into account the decrease of the
interaction if the Al-O distances increase and the polynomial
factor describes the dependence on the O-Al-O angleR. The
factors are such thatE(3) is in kcal/mol if r is given in Å andR
is given in radians.E(3) is always positive. Below we will
compare the energies obtained by this function with those from
our NN approach. Bakker et al. also generated a large data set
of about 8500type 2configurations and corresponding energies.
It was found difficult to produce a formula corresponding to
eq 7 for fitting these or the combinedtype 1and type 2data.
Type 1andtype 2conformations were used for the network

training. First we trained the network only with the energies
of type 1, in order to create a potential that could be compared
to the analytical function eq 7 mentioned above. Then a
combined set oftype 1and type 2was employed as input for
the network training.
We thus calculated energies of a data set of about 4500

conformations oftype 1and about 8500 conformations oftype
2 of the H2O-Al3+-H2O system (an exact description of the

conformations can be found in ref 14). However, we needed
to calculate about 400 new, strongly repulsive, conformations
(e.g., with water hydrogens close to Al3+ or with hydrogens of
different water molecules near to each other). These conforma-
tions are essential because the NN is just a powerful interpolat-
ing system but was found to fail badly in reproducing energies
of conformations that have no similarity to any trained one
(extrapolation to “unknown” conformations). Excluding these
conformations may lead to artificial minima in the energy
calculation. Thetype 2data set was thus augmented with these
conformations. All energies were obtained by Hartree-Fock
calculations using the same valence double-zeta basis sets with
polarization functions as in ref 14, i.e., a modified Huzinaga25

basis set for Al ([3s2p1d] contraction of a [7s4p1d] primitive
set) and the Dunning double-zeta valence bases26 for O and H.
The counterpoise method17 was used to correct the basis set
superposition error.

4. Data Preparation

In the case of energy calculation via a neural network it would
be possible to use any internal coordinates that describe the
orientation of the molecules in order to implement the orien-
tational dependence of molecule-molecule interactions. For
example, quaternions, spherical harmonics, or Euler angles could
be used, since it is of minor importance if the energy as a
function of these coordinates has a simple shape. For the sake
of simplicity, we took interatomic distances as input parameters
(Figure 1). They are easy to calculate, and the 15 intermolecular
site-site distances in the Al3+(H2O)2 configurations give a
completesalthough overdeterminedsdescription of the geom-
etry of the investigated system. The geometry of H2O was kept
rigid during energy calculation and simulation.
Three interatomic distancessfor example Al-O(1), Al-O(2),

and O(1)-O(2)sare required to give a description of the three-
body conformation if no information about the mutual orienta-
tion is desired. Each additional distance then gives further
information about the mutual orientation. In the case oftype 1
conformations, it would thus be sufficient to use the two Al-O
distances and the O-O distance to train a neural network to
the same or better quality as the analytical potential 7, which
just uses these distances. However, it turned out that the
network in this first test casesjust like potential (eq 7)scould
not accurately reproduce all Hartree-Fock energies. Therefore
11 interatomic distances that fully define the spatial conforma-
tions were used as input. This set consisted of all Al-O, O-O,
O-H, and H-H distances. The comparison between such a
neural network trained with data settype 1and the analytical
three-body eq 7 was our second test case.
The flexibility and applicability of neural networks as an

alternative to analytical functions was investigated by augment-
ing our training set with data of the (mainly) attractive three-
body interactions oftype 2, which describe the interaction
between water molecules in different hydration spheres.
In contrast to the situation when conventionally fitted potential

functions are used, here the interatomic distances themselves
cannot be used as input data. The first reason is simply that,
based on the use of tanh(x) as transfer function and Nguyen-
Widrow conditioned initial values, the hyperbolic tangent has
its inflection point at the origin and remains nearly constant
for x< -1 andx> +1. Hence, both large or small input values
lead to very similar output values of nearly-1 or +1,
respectively. Therefore, all input values were scaled separately
using formula 8:

Figure 2. Type 1(a) andtype 2(b) conformations.

E(3) ) 74.85
4.187

(0.06413+ (π - R)2)2 exp(-0.2465(rAlO1
2 +

rAlO1
2 )) (7)
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The calculated scaling parameters were saved and used during
the energy calculation to scale the input for unknown conforma-
tions. Hence the values ofxmin andxmaxare part of the network.
There are overall 22 values (in the case of 11 input values);t
in formula 8 describes the type of interaction, e.g. the first
hydrogen-hydrogen interaction. Allxmin andxmax values are
determined after the symmetrizing operation described in the
section below. The prescaling of the input data to values close
to or inside the interval-1 e xbi

t e + 1 may lead to a problem,
since a trained network is normally not capable of reproducing
the interaction energy for conformations with distances outside
the maximum or minimum distances used in the prescaling
factors. If the input distances are outside this predefined range,
the scaling does not lead to network inputs within the range
between-1 and+1. Consequently, all neurons of the first
hidden layer will produce values of nearly+1 or -1, respec-
tively, and are unable to distinguish between intermediate values.
The subsequent layers show the same behavior and produce a
meaningless result. Thereforexmin andxmaxmust be chosen so
that not only the distances in the training set but also the
distances actually occurring during the simulation are between
xmin and xmax. For example, if the cutoff distance for three-
body interactions is set to 5 Å, the training set should include
data for conformations with Al-O distances of at least 5 Å
and for O-H distances of at least 10 Å.
The second reason that the interatomic distances themselves

cannot be used is the requirement to ensure the correct symmetry
of the interactions. As mentioned above, an analytical potential
function is normally composed of several terms that describe
the interactions between different interaction centers, e.g., the
Al3+‚‚‚H11 interaction (H11 is H no. 1 on water no. 1). The
same terms with the same values of the fitted parameters are
used for all interactions between the same type of centers, e.g.,
for Al3+‚‚‚H11 as well as for Al3+‚‚‚H12, since there is only one
class of Al and one class of H atoms. If different fitting
parameters would be allowed for the interactions between the
same kind of centers, these parameters would not necessarily
become equal except in the limit of a complete and infinite data
set. In the case of the neural network approach, this simple
way to preserve the correct symmetry is no longer possible,
since no separate parameters are responsible for each site-site
interaction, and one must find a way to ensure that any
interchange (Table 1) of two distances between the same class
of pair of sites does not change the resulting energy. This can
be achieved by applying symmetrization functions to “destroy”
the individuality of each distance in the set of distances
belonging to the same class of pair of sites. All these functions
belong to the same symmetry groupD. In our case they can
be classified by

D specifies all allowed cyclic exchanges of atoms where the
indices are defined as follows: Al 7, O1 5, H11 1, H12 2, O2 6,
H21 3, and H22 4. For example, (14)(23)(56) means that two
triplets, (H11/H12/O1), (H22/H21/O2), belong to the same class
of interactions (Table 1).
The five types of intermolecular distances (a) O-O, (b) Al-

O, (c) Al-H, (d) O-H, and (e) H-Hmust be taken into account
(Table 1). A simple way to symmetrize them is to take the
absolute value of their sums and differences:

(a) Since there exists only one O-O distance, it can directly
be used for the energy calculation.
(b) There are two Al-O distances. In order to assure that

an exchange of the O coordinates cannot change the result of
the neural network, these distances need to be symmetrized:

(c) There are four Al-H distances. The inputs for the
allowed interchanges are calculated as the absolute value of two
distances of atoms which are allowed to change place combined
by plus or minus, respectively. An empirical rule is as
follows: combine the distances between the atoms as the sum
and the difference of those and take the absolute value of the
result. For the more complicated combinations it is necessary
to repeat the procedure.

(d) The situation for the O-H distances is the same:

(e) The number of intermolecular H-H distances equals those
of the O-H distances:

TABLE 1: Symmetry of the System: For Given Cartesian
Coordinates These Eight Sets of Atoms Must Lead to the
Same Energy. See Text for Further Explanation

Al Al Al Al

O1H11H12 O1H12H11 O1H11H12 O1H12H11

O2H21H22 O2H21H22 O2H22H21 O2H22H21

Al Al Al Al

O2H21H22 O2H22H21 O2H21H22 O2H22H21

O1H11H12 O1H11H12 O1H12H11 O1H12H11

rAl-O
(1) ) |rAl-O1

+ rAl-O2
| and rAl-O

(2) ) |rAl-O1
- rAl-O2

|

rAl-H
(1) ) |rAl-H11

+ rAl-H12
| + |rAl-H21

+ rAl-H22
|

rAl-H
(2) ) |(|rAl-H11

- rAl-H12
| + |rAl-H21

+ rAl-H22
|) -

(|rAl-H11
- rAl-H12

| + |rAl-H21
- rAl-H22

|)|

rAl-H
(3) ) |(|rAl-H11

- rAl-H12
| + |rAl-H21

+ rAl-H22
|) +

(|rAl-H11
- rAl-H12

| + |rAl-H21
- rAl-H22

|)|

rAl-H
(41) ) |rAl-H11

- rAl-H12
| + |rAl-H21

- rAl-H22
|

rO-H
(1) ) |rO1-H21

+ rO1-H22
| + |rO2-H11

+ rO21-H12
|

rO-H
(2) ) |(|rO1-H21

+ rO1-H22
| + |rO2-H11

- rO21-H12
|) -

(|rO1-H21
- rO1-H22

| + |rO2-H11
+ rO21-H12

|)|

rO-H
(3) ) |(|rO1-H21

+ rO1-H22
| + |rO2-H11

- rO21-H12
|) +

(|rO1-H21
- rO1-H22

| + |rO2-H11
+ rO21-H12

|)|

rO-H
(4) ) |rO1-H21

+ rO1-H22
| + |rO2-H11

- rO2-H12
|

rH-H
(1) ) (|rH22-H21

+ rH22-H11
| + |rH21-H11

+ rH21-H12
|) +

(|rH22-H12
+ |rH21-H12

| + |rH21-H11
+ rH22-H11

|)

rH-H
(4) ) (|rH22-H21

+ rH22-H11
| + |rH21-H11

+ rH21-H12
|) +

(|rH22-H12
- rH21-H12

| + |rH21-H11
- rH22-H11

|)

xbi
t )

2(xi
t - xmin

t )

(xmax
t - xmin

t )
- 1 (8)

D ) {(12), (14)(23)(56), (34),(13)(24)(56), (1324)(56),
(12)(43), (1423)(56)} (9)
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5. Determining the Network Structure

The number of adjustable parameters of the neural network
is determined by the number of hidden units and by the size of
the input vector:

In this equation,n is the number of adjustable parameters,i is
the number of neurons in the first hidden layer,ni is the number
of input parameters, andj is the number of neurons in the second
hidden layer. For example, a network that processes 11 input
parameters with five neurons each in the first and second hidden
layer and one output neuron has altogether 96 parameters (also
called weights and biases). We refer to the size and structure
of the network as “5+5+1”, or, in general, “i+j+1”.
For optimal results, it is important to choose a reasonable

number of neurons and inputs. Too many neurons will cause
the data set to be “memorized” (the so-called overtraining
effect). On the other hand, a network with too few neurons
may be insufficient to extract all information from the data set.
In practice one has to try different network sizes and monitor
the prediction capability and the recall error before deciding
on the optimal number of neurons. Table 2 lists the number of
floating-point operations for some different network sizes and
different sizes of the input vector, and Table 3 shows the
corresponding CPU times.
Each network was trained for 20 000 back-propagation cycles

using the method of immediate error correction (that means the
error correction for all input data is done at once). For
simplicity, all networks had the same number of neurons in the
first and second hidden layer. As test cases, we trained networks
with the preprocessedtype 1plustype 2conformations. Points
with energies higher than+100 kcal/mol were removed since
their probability is negligible. Half of the remaining data (about
6600 points) was used for network training. The other half was
then used in a jackknife test to calculate the prediction error
which was examined after each back-propagation cycle in order
to recognize a possible overtraining effect.
Table 3 shows the capacity of recalling and predicting

energies, respectively. Since the networks are all relatively
small, the error of prediction and the error of recall normally
decrease with increasing number of neurons. One can see that
too few neurons are not able to extract the hidden information
accurately; on the other hand, too little information about the
conformation of the examined system disables exact differentia-
tion between similar conformations. It can be seen that a
network with four or five neurons in each hidden layer is a
good compromise between error and computational effort and
that the behavior of the prediction error is nearly similar to that
of the recall error. As an exception, a slight tendency to an

overtraining effect of networks with only three and seven inputs
should be mentioned.

Missing information about the spatial conformation of the
examined system necessarily leads to inaccurate reproduction
of the energy, but as can be seen from the figures, this effect is
gradual. For example, if only the three distances Al-O(1), Al-
O(2), and O(1)-O(2) are used, the network has no information
about the positions of the hydrogens and subsequently even a
large network fails to correctly reproduce and predict conforma-
tions that differ only in the hydrogen positions. This might
not be a serious problem if one is only interested in the repulsive
parts of the three-body problem because, as mentioned before,
these conformations do not strongly depend on the hydrogen
positions. For the fitting of the attractive parts of the potential
(thetype 2data) the relative orientations are important, however.
With 11 interatomic distances the system is fully defined and
the network accurately reproduces the energies. The use of all
15 interatomic distances does not improve the results any more,

TABLE 2: Number of Floating Point Operations (Flops)
Required for Calculating One Energy as a Function of the
Size of the Network. The Numbers in Parentheses Include
Symmetrizing and Prescaling Operations. For Comparison,
the Analytical Potential Function14 Needs 14 (47) Flops

inputsnumber of
neurons 3 7 11 15

1+1+1 24 (62) 32 (146) 40 (254) 48 (326)
2+2+1 54 (92) 70 (184) 86 (300) 102 (380)
3+3+1 86 (124) 110 (224) 134 (348) 158 (436)
4+4+1 122 (160) 154 (268) 186 (400) 218 (496)
5+5+1 162 (200) 202 (316) 242 (456) 282 (560)
6+6+1 206 (244) 254 (368) 302 (516) 350 (628)
7+7+1 254 (292) 310 (434) 366 (580) 422 (700)
8+8+1 306 (344) 370 (484) 434 (648) 498 (776)
9+9+1 362 (400) 434 (548) 506 (720) 578 (856)
10+10+1 422 (460) 502 (616) 582 (796) 662 (940)

TABLE 3: Standardized Errors (kcal/mol) for Recall and
Prediction after Training for 20 000 Cycles As Determined
by Training of Networks with Different Numbers of Neurons
and Input Data. The CPU Time Refers to the Network
Training (Time in Minutes on an SGI Indigo 4000
Workstation)

neurons weights CPU time recall error prediction

3 Inputs
1 8 85 13.38 13.58
3 28 223 5.38 5.78
5 56 346 5.18 5.56
7 92 487 4.93 5.75
9 136 644 4.69 5.11

7 Inputs
1 12 95 11.74 11.85
3 40 235 4.58 4.75
5 76 361 3.81 3.96
7 120 516 3.36 3.46
9 172 648 3.53 3.66

11 Inputs
1 16 114 11.73 11.85
3 52 251 3.87 4.03
5 96 376 3.21 3.32
7 148 520 3.07 3.22
9 208 667 2.59 2.69

15 Inputs
1 20 122 11.08 11.25
3 64 265 3.83 4.00
5 116 392 3.16 3.29
7 176 538 3.00 3.12
9 244 688 2.51 2.66

rH-H
(2) ) |(|rH22-H21

+ rH22-H11
| + |rH21-H11

+ rH21-H12
|) +

(|rH22-H12
+ rH21-H12

| + |rH21-H11
+ rH22-H11

|) +

(|rH22-H21
+ rH22-H11

| + |rH21-H11
- rH21-H12

|) +

(|rH22-H12
- rH21-H12

| + |rH21-H11
+ rH22-H11

|)|

rH-H
(3) ) |(|rH22-H21

+ rH22-H11
| + |rH21-H11

- rH21-H12
|) +

(|rH22-H12
- rH21-H12

| + |rH21-H11
+ rH22-H11

|) -

(|rH22-H21
+ rH22-H11

| + |rH21-H11
- rH21-H12

|) +

(|rH22-H12
- rH21-H12

| + |rH21-H11
+ rH22-H11

|)|

n) i(ni + 1)+ j(i + 1)+ (j + 1) (10)
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because it contains redundant information. Hence we decided
to use a 5+5+1 network with 11 inputs for the subsequent MC
simulations.

6. Results: The Final Potentials

The simulation results presented here are best understood if
we first look at the differences of the applied potential functions.
Let us briefly reexamine the analytical potential function. Figure
3a shows that the repulsive parts of the three-body interaction
(the upper right quadrant) are fairly well reproduced but that
the potential function fails for the attractive (type 2) interactions,
which are caused by the interaction of “hydrogen-bonded” water
molecules in different hydration shells with O-Al-O angles
less than 50°. Formula 7 has only three argumentssr(Al-O1),
r(Al-O2), and∠(O-Al-O)sand the resulting energy surface
is rather simple. Corresponding to Figures 3a and 3b, in Figure
4a and 4b two-dimensional subsets of the energy surface with
one water molecule at a fixed position are shown. The network
surface generated using the same (type 1) conformations and
with r(Al-O1), r(Al-O2), andr(O1-O2) used as input for the

network trainings is shown in Figure 4b. The main difference
between the upper and lower parts of Figure 4 occurs for
conformations where both water molecules lie on opposite sides
of the Al ion. Here the NN potential is more repulsive than
the analytical one (Figure 4a). More contour lines in the low-
energy than in the high-energy regions were drawn to show
this more clearly in the figures. An examination of the ab initio
data points shows that the NN potential reproduces them more
faithfully and that the functional form of eq 7 leads to a nearly
vanishing three-body potential for∠(O-Al-O) ) 180°,
whereas the real one has a minimum but does not vanish.
Figure 3b shows the same correlation for the NN potential

as is shown in Figure 3a for the analytical one. The regions
with energies in excess of 100 kcal/mol are not reproduced,

Figure 3. Correlation analysis for the analytical three-body potential
(a) and the network potential trained withtype 1data (b). Because no
information about attractive conformations is present, the NN potential
fails for type 2energies, as does the analytical one.

Figure 4. Contour plots of the three-body energy surface oftype 1
conformations (a) calculated using the analytical potential and (b) by
a (5+5+1) network trained only with these conformations. In (b) the
repulsive parts oftype 1 conformations as well as some slightly
attractive conformations oftype 1are reproduced well. For both (a)
and (b) the energy is a function only of the distances of the Al3+ ion
to the oxygen atoms of the water molecules and the angle formed by
these distance vectors.
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since the data threshold was set to this value. Extremely
repulsive energies have only little importance during simula-
tions; on the other hand, the reduction of the energy range lowers
the amount of neurons needed for accurate energy reproduction.
The low overall quality of the fit is again caused by the wrong
reproduction oftype 2energies. There is no difference between
the type 1and type 2energy surfaces of the neural network, a
consequence of the number of input parameters. The network
has no further information about strongly attractive conforma-
tions. Since the input data lack information about O-H and
H-H orientations or distances, the network fails to reproduce
type 2energies and their contour plots would therefore be similar
to Figure 4b.
If on the other side bothtype 1and type 2conformations

with a fully defined data set (11 inputs, including Al-O, O-O,
O-H, and H-H distances) are used, the energy surface changes
in regions of attractive three-body interactions.Type 1andtype
2 energy surfaces calculated using this network are not alike,
as shown in Figure 5.Type 2conformations have minima in
the region of O-H hydrogen bonding. In contrast,type 1
conformations show a minimum forC2V symmetry with
bifurcated hydrogen bonds. The correlation analysis (Figure
6) underlines the accuracy of the fit. It should be mentioned
again that it would probably be quite difficult to find an
analytical function with the same properties.

7. Monte Carlo Simulations

Details of the Simulations. To demonstrate our approach,
Monte Carlo simulations were carried out with a code origi-
nating from the program CARLOS18 adapted and augmented
by the neural network and the three-body routines. For the
H2O-H2O interactions, the MCY potential19 was used. The
Al-H2O pair interactions were taken from ref 14:

For the H2O-Al-H2O three-body interactions, either the
analytical potential function 7 or one of our neural network
potentials was used.
The basic cube contained 200 water molecules and one cation.

The examined Al3+ ion was fixed in the middle of the cube
with a side length of 18.185 Å. Periodic boundary conditions
were used. This represents a 0.28mAl(III) salt solution. The
simulation temperature was set to 300 K.
Four simulations were carried out: (a) only pair potentials

were used for all interactions. These results are provided for
comparison; (b) a simulation where the analytical three-body
potential 7 was used for H2O-Al3+-H2O interactions is
included since no simulations with this potential have been
published yet; (c) the NN potential trained with only the
repulsive (type 1) three-body interactions and (d) the NN
potential trained with repulsive and attractive interactions (type
1 + type 2) were used.
The three-body interactions were smoothly switched off at

large distances using a function similar to the one in ref 9.

A cutoff parameterrc ) 5 Å was used. After 2× 106

equilibration cycles 1× 106 conformations were sampled. The
results were collected every 600 moves.
Results of the Simulations. We now compare some

representative data extracted from the statistics of the Monte
Carlo runs. The hydration shell structure of the cation was
calculated in terms of radial distribution functions,gRâ(r), for
the ion-oxygen and ion-hydrogen distances and the corre-
sponding running integration numbers,nRâ(r):

whereF0 is the number density of the atoms of typeâ. nRâ(r)
up to the first minimumRmi in g(r) gives then the number of
coordinating atomsâ around atomR. The results are collected
in Table 4 in the following order: the results of simulation (b)
using pair potentials and the analytical three-body function, the

VAl-O[kcal/mol]) -658.02
r

- 597.12

r2
+

266001 exp(-3.89948r) (11)

VAl-H[kcal/mol]) 329.01
r

+ 38.43

r2
+

287.458 exp(-0.35461r) (12)

E3b ) E3b(1- exp(0.5(rc - r1)
4))(1- exp(0.5(rc - r2)

4))

(13)

Figure 5. Contour plots of the three-body energy surface of a fully
trained (withtypes 1+ 2 conformations) network with respect to the
reproduction oftype 1(a) andtype 2(b) energies. Both the attractive
and the repulsive conformations are reproduced accurately.

nRâ(r) ) 4πF0∫0rgRâ(r)r
2 dr (14)
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results of simulations applying neural potentials oftype 1(c)
andtype 1+ type 2(d), and the results of simulation (a) using
only pair potentials.

Just like with the analytical three-body potential (b), the NN
potential functions ensure a coordination number of 6 within
the first hydration shell around Al3+; this agrees with the
experimentally determined value.20 The position of the maxi-
mum ofgAl-O changes from 1.93 (a) to 1.98 Å (c) because of
its more repulsive character for the conformations where the
O-Al-O angle is nearly linear. Applying the neural network
trained with type 1+ type 2 conformations (d), the Al-O
distance decreases to 1.91 Å. This reflects the average influence
of the repulsive effects of water molecules within the same
hydration shell and the attractive interaction if two water
molecules lie within 50° and in different shells. The water
molecules of the first and second hydration shell remain well
separated during all simulations. Figure 7a showsgAl-O(r) and
gAl-H(r) together with their integration numbers for this
potential. For comparison, the corresponding curves for the pair
potential simulation (a) are included in Figure 7b.
We have analyzed a few other properties that are characteristic

of the cationic hydration shell. For comparison, the pair
potential data are also given. Figure 8a shows the

Figure 6. Correlation plot for the fully trained network. A good
correlation for repulsive as well as for attractive parts of the interaction
is now obtained.

TABLE 4: Values of the Radial Distribution Functions
grâ(r) for the First Two Hydration Shells of Al 3+; rm1 and
rm2 are the Distances (in Å) Wheregrâ Has Its Maximum.
Rmi Is the Distance of the First Minimum, grâ(Rmi) Is the
Value of the Corresponding Radial Distribution Function,
and nrâ(Rmi) Is the Average Number ofr and â at the
Minimum Distance Rmi

Analytical Three-Body Potential

R â rm1 gRâ(rm1) Rmi gRâ(Rmi) nRâ(Rmi) rm2 gRâ(rm2)

Al O 1.93 26.31 2.18-3.82 0 6 4.19 5.92
Al H 2.63 10.11 3.10-3.80 0 12 4.91 2.39
O O 2.81 2.62 3.47 0.87 4.98 4.06 1.11
O H 1.91 1.15 2.56 0.24 1.90 3.34 1.66
H H 2.47 1.32 3.12 0.84 5.91 3.86 1.14

NN PotentialType 1

R â rm gRâ(rm) Rmi gRâ(Rmi) nRâ(Rmi) rm2 gRâ(rm2)

Al O 1.98 28.93 2.24-3.87 0 6 4.32 5.28
Al H 2.65 10.53 3.15-3.75 0 12 4.95 2.38
O O 2.84 2.54 3.56 0.97 5.61 4.33 1.04
O H 1.92 1.08 2.50 0.27 1.82 3.34 1.62
H H 2.48 1.37 3.10 0.84 6.93 3.87 1.13

NN PotentialType 1+ 2

R â rm gRâ(rm) Rmi gRâ(Rmi) nRâ(Rmi) rm2 gRâ(rm2)

Al O 1.91 21.74 2.29-3.52 0 6 3.90 5.84
Al H 2.62 8.32 3.20-3.75 0 12 4.35/4.40 1.95/2.01
O O 2.85 2.36 3.68 0.98 6.25 4.16 1.06
O H 1.92 0.99 2.53 0.28 1.83 3.51 1.50
H H 2.46 1.42 3.07 0.79 6.61 3.81 1.23

Analytical Two-Body Potential Only

R â rm gRâ(rm) Rmi gRâ(Rmi) nRâ(Rmi) rm2 gRâ(rm2)

Al Oa 1.88 26.41 2.46 0 8 4.04 2.58
Al Ha 2.60 11.69 3.31 0.06 16 4.55 1.75
O O 2.84 2.48 3.47 0.87 2.49 4.24 1.09
O H 1.94 1.09 2.55 0.28 1.96 3.33 1.63
H H 2.48 1.33 3.05 0.84 6.52 3.81 1.14

a A small maximum appearing between the listed first and second
maximum includes one water molecule. This fact is explained in ref
14.

Figure 7. (a) Radial distribution functions of Al-O (dashed line) and
Al-H (solid line) from the simulation with a neural network potential
(5+5+1) trained with datatypes 1+ 2 (MC simulation (d)); (b) using
only pair potentials (MC simulation (a)).
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distribution of the angle between the ion-oxygen vector and
the dipole vector of water molecules in the first hydration shell
for the pair potential simulation (dashed line) and the neural
potential simulation (solid line). Although the water molecules
in the latter case are much less tightly bound, the distributions
are similar with a maximum close to 180°. This indicates that,
due to the decrease in the number of water molecules and the
slight increase in Al-O distance, these water molecules have
more space and obtain favorable positions. For the same reason,
the distribution of the O-H‚‚‚O hydrogen bond angle (Figure
8b) from the simulation with the neural network potential shows
a much sharper maximum around 180° compared with the
simple pair potential simulation.
Concerning the second hydration sphere, the position of the

second maximumg(r) in simulation (c) changed to 4.32 Å from
4.19 Å determined in the simulation with the analytical potential
(b). The NN potential in simulation (d) reduced its value to
3.90 Å as a result of the attractive interactions now included
between water molecules of different hydration shells. ThegOO
radial distribution function (Figure 9) shows a decrease of the
average O‚‚‚O distance from the first to the second hydration

shell from 2.69 Å (a) to 2.53 Å (d) and a much more structured
distribution in the latter case that can be explained by the less
crowded hydration shell in the same way as for the angular
functions discussed above.

8. Conclusion and Outlook

We have shown that the approach of fitting intermolecular
potentials with neural networks is a possible alternative to
standard fitting procedures for three-body interaction energies.
As a real-world example, the O-Al-O three-body interactions
in the Al3+/H2O system were used. The major advantage and,
at the same time, disadvantage is that there are no restrictions
imposed by the particular mathematical form of the potential
function. A 5+5+1 network should be sufficient for all
potential functions between three rigid bodies. The employed
back-propagation algorithm with adaptive learning ensures fast
and good results with a better ability to interpolate and predict
the potential energy of the system than offered by standard
analytical potential functions.
It should be kept in mind, however, that neural networks are

only one class of functions to model arbitrary hypersurfaces as
closely as desired. Other such functions include, for example,
certain polynomials, most prominently splines. The relative
advantages and disadvantages between these possible candidates
are not yet clear, but the current study suggests that feed-forward
neural networks have no special “predictive power” for sparsely
sampled parts of the energy hypersurface.
The ab initio calculations were carried out using the quantum

chemical programs HONDO21 and Gaussian 90/92.22 The
network training was performed using Matlab 4.223 with the
neural network toolbox. The simulations were carried out with
the Fortran programs mentioned in the text. Coordinates,
energies of the data points, and the network parameters are
available from the authors upon request as a technical report24

containing a more detailed description of the neural networks
and of the simulations.
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Figure 8. Distribution of the angle between the ion-oxygen distance
vector and the dipole vector of water molecules in the first hydration
shell for the NN potential simulation c (solid line) and the pair potential
simulation a (dashed line) (a) and distribution of the OH‚‚‚O angle
obtained with the neural potential for the same simulations (b).

Figure 9. O-O radial distribution function for the subset of water
molecules in the first two hydration shells of Al3+ for the NN potential
simulation c (solid line) and the pair potential simulation a (dashed
line).

4604 J. Phys. Chem. A, Vol. 102, No. 24, 1998 Gassner et al.



000567 is gratefully acknowledged. We also extend our sincere
thanks to Professor Kurt Girstmair from the Institute of
Mathematics of Innsbruck University for useful discussions.

References and Notes

(1) McCulloch, W. S.; Pitts, W.Bull. Math. Biophys.1943, 5, 115-
133.

(2) Pitts, W.; McCulloch, W. S.Bull. Math. Biophys.1947, 9, 127-
147.

(3) Reibnegger, G.; Weiss, G.; Werner-Felmayer, G.; Judmaier, G.
Proc. Natl. Acad. Sci.1991, 88, 11426-11430.

(4) Gasteiger, J.; Zupan, J.Angew. Chem.1993, 105, 510-536.
(5) Zupan, J.; Gasteiger, J.Anal. Chim. Acta1991, 248, 1-30.
(6) Clementi, E.; Kolos, W.; Lie, C. G.; Ranghino, G.Int. J. Quantum

Chem.1980, 17, 377.
(7) Hermansson, K.J. Chem. Phys.1988, 89, 2149-2159.
(8) Probst, M. M.; Spohr, E.; Heinzinger, K.Chem. Phys. Lett.1989,

161, 405-408.
(9) Probst, M. M.; Spohr, E.; Heinzinger, K.; Bopp, P.Mol. Simul.

1991, 7, 43-57.
(10) Kratzer, K. P.Neuronale Netze Grundlage und Anwendungen;

HANSER-Verlag: München, 1992.
(11) Rumelhard, D. E.; Hinton, G. E.; Williams, R. J.Nature (London)

1986, 323, 533-536.
(12) Zupan, J.; Gasteiger, J.Neural Network for Chemists; VCH

Chemie: Weinheim, 1993.

(13) Nguyen, D.; Widrow, B.Int. Joint Conf. Neural Networks1990,
3, 21-26.

(14) Bakker, A.; Hermansson, K.; Lindgren, J.; Probst, M. M.; Bopp,
P. A. To be published.

(15) Meier, W.; Bopp, Ph.; Probst, M.; Spohr, E.; Lin, J.J. Phys. Chem.
1990, 94, 4672.

(16) Laurs, N.; Bopp, Ph.Ber. Bunsen-Ges. Phys. Chem.1993, 68, 982.
(17) Boys, S. F.; Bernardi, F.Mol. Phys.1970, 19, 553.
(18) Collaborative Computational Projects 5, Daresbury Laboratory (http:

//gserv.dl.ac.uk/CCP/CCP5/librar.html).
(19) Lie, G. C.; Clementi, E.; Yoshimine, M.J. Chem. Phys.1976, 64,

2314.
(20) Bergstro¨m, P.; Lindgren, J.; Read, M.; Sandstro¨m, M. J. Phys.

Chem.1991, 95, 7650.
(21) Dupuis, M.; King, H. F.; Rys, J.HONDO 8.0, IBM Corporation.
(22) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.;

Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M.
A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley,
J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.;
Stewart, J. J. P.; Pople, J. A. Gaussian Inc.: Pittsburgh, PA, 1992.

(23) Matlab 4.2; The MathWorks, Inc.: Nantic, MA, 1995.
(24) Gassner, H.; Probst, M.; Lauenstein, A.; Hermansson, K. CCGI

Technical Report 2/97.
(25) Huzinaga, S.; Andzelm, J.; Klobukowski, M.; Radzio-Andzelm, E.;

Sakai, Y.; Tatewaki, H. InGaussian Basis Sets for Molecular Calculations,
Physical Sciences Data 16; Huzinaga, S., Ed.; Elsevier: New York, 1984.

(26) Dunning, T. H.J. Chem. Phys.1970, 53, 2823.

Intermolecular Potential Functions J. Phys. Chem. A, Vol. 102, No. 24, 19984605


