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Representation of Intermolecular Potential Functions by Neural Networks

1. Introduction

Itis now rather commonly appreciated that so-called “artificial
neural networks” (which will further be abbreviated as NNs)
can be useful in various contexts. Among the most important
are storage and interpolation of data as well as pattern
recognition in the sense of extracting important features from
sets of data. The interest in NNs has increased much during
the past decade, although the concept has been known for 5
years!t?

Examples of applications in the field of chemistry include
medical chemistry,electrostatic potential compariséf,and,
generally, structureactivity relationship studies of various
kinds# Whereas in most such applications semiquantitative
results are sufficient and a very accurate reproduction or
prediction of data is not necessary, the simple mathematical
structure of feed-forward NNs also makes them a suitable
alternative for classical function approximation.
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We have investigated how a neural network representation of intermolecular potential functions can be used
to elevate some of the problems commonly encountered during fitting and application of analytical potential
functions in computer simulations. For this purpose we applied feed-forward networks of various sizes to
reproduce the three-body interaction energies in the syst&r-BI3t—H,0. In this highly polarizable system

the three-body interaction terms are necessary for an accurate description of the system, and it proved difficult
to fit an analytical function to them. Subsequently we performed Monte Carlo simulations or¥‘aioil
dissolved in water and compared the results obtained using the neural network type potential function with
those using a conventional analytical potential. The performance and results of our calculations lead to the
conclusion that, for suitable systems, the advantages of a neural network type representation of potential
functions as a model-independent and “semiautomatic” potential function outweigh the disadvantages in
computing speed and lack of interpretability.

chemical means, the potential energy surface is commonly
approximated by analytical potential energy formulas. These
have usually been obtained by parametrization, either toward
guantum chemically calculated energies or toward different
experimental data, and should allow fast and accurate retrieval
and interpolation of the energies and forces. In this sense,
analytical potential functions can be viewed simply as a means
of storing and retrieving data and to map discrete data points
Qnto continuous functions, as can also be accomplished, for
example, via interpolation from look-up tables or via splines

or Bezier curves.

It often turns out that the fitting procedure to construct such
analytical functions is a labor-intensive and cumbersome task
which requires a lot of experience since, in a real chemical
system, a multitude of bonding effects interact to form the
potential surface. From a more formal point of view, the total
energy of a molecular system can be expressed as a many-body

. . . . expansion:

Furthermore, due to their relatively simple structure and their
universal applicability, NNs can be implemented in computer g _ = Z E® + Z Ei(JZ) + Z i(?)k.|_ L+ Em)( .
hardware, and specialized NN coprocessors are available (this | = iz i<i%c<n
is a situation similar to that in the case of digital signal 1)
processing). A second technical aspect is that they are very
well suited for parallel processing. where, for example, the pair and three-body interactions are

The conceptual and practical importance of the potential @ W )
energy surface (PES) within the framework of “Bet@ppen- By =&, [+ §"] (2)
heimer chemistry” is well established. In the following, we
will use the terms “potential energy surface” and “potential ,(?)k =Ejx— [Ei(l) + Ej(l) + Eﬁl)] - Z Ei(? 3)
energy function” interchangeably. PESs are needed, for ex- <]

ample, as input for molecular mechanics, molecular dynamics,
and Monte-Carlo simulations. The feasibility of performing

such simulations critically depends on an accurate and fast
representation of the system energy as a function of the atomic
or molecular coordinates. In the many cases where it is not!
necessary or feasible to calculate energies (or forces) by quanturri

The total energy is the sum of one-, two-, three- up to many-
body energy terms EQ) denotes the energy of the monomer,
andE® andE® are the two-body and three-body parts of the
potential function. In some cases, the nonadditive parts of the
nteraction potential are relatively small and the sum may be
runcated after the second term. This is often done, for example,
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in simulation studies of water (e.g. refs 15, 16) and other simple
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Intermolecular Potential Functions

not be neglected. This would be the case, for example, in
systems with charged particles which polarize their neighbors
and may even transfer charge to them. The resulting change
in the interaction between the neighbors means that the additivity
approximation breaks down. An example would be a small,
highly charged cation hydrated by water molecules. In such a
case, simulations using potential functions with only pair
interaction terms may lead to erroneous hydration numbers and
other qualitatively wrong properties. These effects were, for
example, studied by Probst et al. for the hydration of th&Be
ion 89

It often turns out to be comparatively easy to set up functions
that describe the pairwise interactions between molecules.
These functions are frequently written in terms of sums of one-
dimensional functions of the interatomic distances. It is
generally much more difficult to find an analytical function that
fits all occurring types of three-body interactions in the system.
We therefore decided to experiment with a neural network
approach, in contrast to conventional fitting procedures, for the
purpose of reproducing the three-body terms in the wéter
interactions in an agqueous ionic system, namely; @lq).

The main purpose of this paper is to introduce the methodol-
ogy and to demonstrate its applicability. Nevertheless, results
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Figure 1. Architecture of the feed-forward network. The input consists
of a vector of interatomic distances which are processed to calculate

of MC simulations with the approach described here are also the energy.

presented and discussed briefly, since, to our knowledge,
simulation studies on Af(aq) have not yet been published.

2. Method

In this paper we use a neural network to construct three-
body interaction energy potential functions for3At-water
interactions. Compared to the normal fitting approach, the
following similarities and differences can be noted.

Instead of “inventing” a potential energy function, one decides
on the size of the network. The network, in principle, can fit

f(9 =kS 5)

For network training we used the back-propagation algorithm.

The generalized delta-rule for gradient descent was em-

ployed!'?2 An adaptive learning rate was used in order to

improve the speed of the standard back-propagation algorithm.
For all back-propagation calculations, the network parameters

were set as follows. The initial learning rajavas set to 105,

the momentum constapt was 0.95. The learning increment

and decrement factors were 1.05 and 0.70, respectively. The

the data as accurately as desired, but problems regardinginitial weights and biases were generated using the Nguyen

spurious minima and other artifacts are still possible. One has
to abandon the physical interpretability of the various terms in
the potential energy expression (for example those with different

powers of the distance) because due to the structure of a neural

network, there are no separable terms present.

The representation of the numerical values by a neural
network consisting of many (tansigmoidal) transfer functions,
as discussed below, normally needs more computational effort
than the use of an analytical potential function.

In our case, the output from the network is the interaction
energyE of the system or rather its three-body part, and the
input consists of the interatomic distances. The functional form
is of the shapd(>(ay + bix)), wherea and b are network-
specific parameters ard({xi, X, ..., Xn}) the input vector or
the output of other so-called transfer functidnsvhich build
up the hidden layers inside the network.

Network Architecture. The network architectupé®defines
how the different layers are connected to each other. Itis, in
our case, “feed-forward”; that is, the whole network can simply
be expressed as one nested functor f(3 (g + bif(...))), as
is visualized in Figure 1. The functiorfi&), wherexis Y (a +
bix), are in most cases “S-shaped” functions which méaguto
the ranges-1 < f(x) < +1or 0= f(x) < +1:

_e-¢°S 1
f(O="5"= S
e +e 1+e

or f(9 = 4)

S

Alternatively they can also be simple scaling functions:

Widrow initial conditions?

— Id i/
W= Wi 0.7V] (6)
Herej is the index of the current neuron, and the index of
the current input value @15 in our case). W is the
combined randomly generated weight and bias matrix, which
consists of normalized row vectors.

3. The System

Here we will study the interaction of At with water by
means of Monte Carlo simulations, using the neural network
for the construction of the ¥0—AI3*—H,0 three-body interac-
tions and a simple analytical potential function for all two-body
interactions in the system. Other three-body and higher-order
terms were neglected. The%HH,0 interaction is so strong
that computer simulations with only pairwise additive forces
are inaccurate. In an aqueous*Akolution, the interaction of
Al3T with two water molecules mainly occurs for two different
types of geometrical conformations. The first conformation type
corresponds to one water molecule residing in the first hydration
shell (according to the AF—H,O distance) of the cation with
the other water molecule in either the first or the second shell
and the G-Al—-0 angle being larger than %0 The three-body
interaction is here repulsive for nearly all chemically feasible
orientations of the water molecules. The value of this interaction
depends then mainly on the-@l—0O angle and on both ion
oxygen distances. We will call these conformatiayise 114
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{a) conformations can be found in ref 14). However, we needed
'S -"::l to calculate about 400 new, strongly repulsive, conformations
Y ; (e.g., with water hydrogens close to3Alor with hydrogens of
different water molecules near to each other). These conforma-
° o ° tions are essential because the NN is just a powerful interpolat-
ing system but was found to fail badly in reproducing energies
;") , 'S of conformations that have no similarity to any trained one
L (extrapolation to “unknown” conformations). Excluding these
conformations may lead to artificial minima in the energy
) calculation. Thdype 2data set was thus augmented with these
(k] k‘-‘," conformations. All energies were obtained by HartrEeck
" calculations using the same valence double-zeta basis sets with
polarization functions as in ref 14, i.e., a modified Huzirfdga
basis set for Al ([3s2p1d] contraction of a [7s4p1d] primitive
set) and the Dunning double-zeta valence b&$es O and H.
."‘:_:, The counterpoise meth&dwas used to correct the basis set
superposition error.

o q 4. Data Preparation

[‘_' " In the case of energy calculation via a neural network it would
- be possible to use any internal coordinates that describe the
Figure 2. Type 1(a) andtype 2(b) conformations. orientation of the molecules in order to implement the orien-

. . tational dependence of moleculmolecule interactions. For
If, in contrast, the ©-Al—O angle is less than aboutSa8nd  gyample, quaternions, spherical harmonics, or Euler angles could
one water is located in the first qnd one in the second hydration ;o used, since it is of minor importance if the energy as a
shell, we call these conformatiortgpe 24 Both types of  f,¢tion of these coordinates has a simple shape. For the sake
conformations are shown in Figure 2. Fgpe 2conformations, ¢ simplicity, we took interatomic distances as input parameters
the three-body (as well as, of course, the two-body) interaction (gjq re 1).” They are easy to calculate, and the 15 intermolecular
depends strongly on the relative orientation of the water o «ite distances in the At(H,0), configurations give a
molecules. The three-body interaction becomes attractive for complete-although overdetermineetiescription of the geom-

some orientations, due to the coqperative hydrogen b_ondingetry of the investigated system. The geometry gDHvas kept
between the water molecules. It is thus necessary to 'nCIUderigid during energy calculation and simulation

hydrogen-hydrogen and hydrogeroxygen interaction terms . .
. . : : Three interatomic distancegor example A0, Al-0@
in the potential energy calculation. Ftpe 1conformations, : ) S '
b 9y and GY—0®@—are required to give a description of the three-

inclusion of the relative orientation of the water molecules in bod ¢ tion if no inf i bout th tual orient
the three-body potential is less important. t'o y COO? or mg\ 'OE' ?10 'g do_tr.ma 'log.at ou t‘; mutua orlfen”?-
Recently Bakker et & developed a function to reproduce uon 1S desired. tach additional distance then gives Turther
information about the mutual orientation. In the caséypk 1

the repulsive G-Al—0O three-body energies of thigpe 1 . . -
conformations by fitting the parameters to about 45@ge 1 conformations, it would thus be sufficient to use the twe-&l
distances and the -©0 distance to train a neural network to

f ions:
conformations the same or better quality as the analytical potential 7, which
@ _ 74.8 22 2 just uses these distances. However, it turned out that the
EY = 4.185(0'06413—'— (7 — @))” exp(=0.2465(, 0, + network in this first test casgust like potential (eq 7-could

r2 ) (7) not accurately reproduce all HartreEBock energies. Therefore
AloL 11 interatomic distances that fully define the spatial conforma-

. . tions were used as input. This set consisted of at®@] O-0,
The exponential part takes into account the decrease of theO—H, and H-H distances. The comparison between such a

:(gﬁga:(gfgcggggtﬁ:geﬁgtg;%ise Igﬁrfhﬁﬁgdaﬁ%?ez?m? emlal neural network trained with data sgpe 1and the analytical

factors are such th&® is in kcal/mol ifr is given in A anda three-body. €a 7 was our .SGCO.I’.]d test case.

is given in radians.E® is always positive. Below we will The erX|b|I|ty anq appl|c§bll|ty of r_1eura|l networks as an

compare the energies obtained by this function with those from alternative to analytical functions was investigated by augment-

our NN approach. Bakker et al. also generated a large data set"d OUr training set with data of the (mainly) attractive three-

of about 850Qype 2configurations and corresponding energies. Pody interactions oftype 2 which describe the interaction

It was found difficult to produce a formula corresponding to between water molecules in different hydration spheres.

eq 7 for fitting these or the combindgpe landtype 2data. In contrast to the situation when conventionally fitted potential
Type landtype 2conformations were used for the network functions are used, here the interatomic distances themselves

training. First we trained the network only with the energies cannot be used as input data. The first reason is simply that,

of type 1 in order to create a potential that could be compared based on the use of tani@s transfer function and Nguyen

to the analytical function eq 7 mentioned above. Then a Widrow conditioned initial values, the hyperbolic tangent has

combined set ofype landtype 2was employed as input for its inflection point at the origin and remains nearly constant

the network training. forx < —1 andx > +1. Hence, both large or small input values
We thus calculated energies of a data set of about 4500lead to very similar output values of nearlyl or +1,
conformations otype land about 8500 conformations ype respectively. Therefore, all input values were scaled separately

2 of the HO—AI3"—H,0 system (an exact description of the using formula 8:
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: 2(Xit _ X:mn) TABLE 1. Symmetry of the System: For Given Cartesian
X=—— (8) Coordinates These Eight Sets of Atoms Must Lead to the
(X:nax_ X'tnm) Same Energy. See Text for Further Explanation

The calculated scaling parameters were saved and used during Al Al Al Al
the energy calculation to scale the input for unknown conforma- 81311312 81:12311 81311:12 81312:11
tions. Hence the values &, andxmaxare part of the network. 2rantiz2 etz 2eziia etz

There are overall 22 values (in the case of 11 input values); Al Al Al Al
in formula 8 descripes the type of interaction, e.g. the first OsHotHa OoHogHor OsHotHan OsHooHos
hydrogen-hydrogen interaction. Alkmin and Xmax values are OyHisH1» OyHi4H1o OyH1H11 OuH1oH11

determined after the symmetrizing operation described in the

section below. The prescaling of the input data to values close (a) Since there exists only one-@ distance, it can directly

to or inside the interva-1 < X < + 1 may lead to a problem,  be used for the energy calculation.

since a trained network is normally not capable of reproducing  (b) There are two AFO distances. In order to assure that
the interaction energy for conformations with distances outside an exchange of the O coordinates cannot change the result of
the maximum or minimum distances used in the prescaling the neural network, these distances need to be symmetrized:
factors. If the input distances are outside this predefined range,

the scaling does not lead to network inputs within the range r%) o= Ira— 0, + Iy O| and rgl) o= I o, rA,,OZ|
between—1 and+1. Consequently, all neurons of the first

hidden layer will produce values of nearyl or —1, respec- (c) There are four ALH distances. The inputs for the
tively, and are unable to distinguish between intermediate values.allowed interchanges are calculated as the absolute value of two
The subsequent layers show the same behavior and produce aistances of atoms which are allowed to change place combined
meaningless result. Therefaxgin andxmax Must be chosen so by plus or minus, respectively. An empirical rule is as
that not only the distances in the training set but also the follows: combine the distances between the atoms as the sum
distances actually occurring during the simulation are between and the difference of those and take the absolute value of the
Xmin @nd Xmax. FOr example, if the cutoff distance for three- result. For the more complicated combinations it is necessary
body interactions is set to 5 A, the training set should include to repeat the procedure.

data for conformations with AtO distances of at least 5 A

and for O-H distances of at least 10 A.

The second reason that the interatomic distances themselves
cannot be used is the requirement to ensure the correct symmetry,y
of the interactions. As mentioned above, an analytical potential "Al-H — e Hit rA'*H12| + |rA'*H21+ rA'*szl) N
function is normally composed of several terms that describe
the interactions between different interaction centers, e.g., the

Al3*..-Hy, interaction (H; is H no. 1 on water no. 1). The
same terms with the same values of the fitted parameters arer AI = 10T Hi
used for all interactions between the same type of centers, e.g.,
for Al3T---Hy; as well as for At™---Hy,, since there is only one
class of Al and one class of H atoms. If different fitting @1)
parameters would be allowed for the interactions between the NP | N —Hy rAl—Hu' T |rA'—H21 N rA'—sz|
same kind of centers, these parameters would not necessarily
become equal except in the limit of a complete and infinite data  (d) The situation for the ©H distances is the same:
set. In the case of the neural network approach, this simple

o
Fa-n = Ta—ny, T Fa-n,l + Pa-n, T Tai-ny,

(Tai-r,, ~ Tai—yl T ITai—h,, — Tai-hy,)

Pl T Pany, T Pany,) +

(Tai-t,, — Tai-yl T ITai-h,, — Tai-hy,)

way to preserve the correct symmetry is no longer possible, oy = Iro,~n,, o+, T IFo,~n, + To,-H,,|
since no separate parameters are responsible for eactsisite

interaction, and one must find a way to ensure that any r(2 =|(Iro._py. + | +Flron. —Tonl) —
interchange (Table 1) of two distances between the same class® 2 2T 21 T2

of pair of sites does not change the resulting energy. This can (IFo,~1,, ~ Ton,,l T IFo,—hy, T o,

be achieved by applying symmetrization functions to “destroy”

the individuality of each distance in the set of distances 3 _— + + - +
: P 2> 150 = |(Iro-ny, 1 To-ny,l T Fo,-h,, ~ To,-hy,)

belonging to the same class of pair of sites. All these functions T 122 2 2 T2

belong to the same symmetry grolp In our case they can (IPo,~1,, ~ To, -ty T IFo,—ty, T o,
be classified by

( )
D ={(12), (14)(23)(56), (34),(13)(24)(56), (1324)(56), = Iro—n,, T To-n,| T Io,-n,, = Mo,-hyl

(12)(43), (1423)(58) (9) (e) The number of intermolecular-+H distances equals those
D specifies all allowed cyclic exchanges of atoms where the of the O—H distances:
indices are defined as follows: Al 7,13, Hi1 1, Hi» 2, O, 6,
Hz1 3, and B2 4. For example, (14)(23)(56) means that two i) =(r, , +ry o | +Iry n +ry p )+
triplets, (Hiy/H12/01), (H2o/H21/O2), belong to the same class 2o zou aou o
of interactions (Table 1). (|rH2fH12 + |errH12| + |rH2an + eranD
The five types of intermolecular distances (a} O, (b) Al—
O, (c) AlI—H, (d) O—H, and (e) H-H must be taken into account r,(f)_H = (|er2_HZl + erz_Hnl + |rH21_H11 + erl—leD +
(Table 1). A simple way to symmetrize them is to take the (Ir oy |+ i )
absolute value of their sums and differences: HpomHip  THyHypp Hy—Hip  "HypmHy
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2 _ TABLE 2: Number of Floating Point Operations (Flops)
TH-H |(|rH22_Hz1 + erz—Hu| + |errHu + errHu') + Required for Calculating One Energy as a Function of the
((LFTRTI o (PRI B o | RV o (RPN ) By Size of the Network. The Numbers in Parentheses Include
22 T2 21 T2 21 227 Symmetrizing and Prescaling Operations. For Comparison,
— I i i 14
(|er2_HZI Ll FTRVIN B ol | FYTRRTIN rHZl_H12|) + the Analytical Potential Function!4 Needs 14 (47) Flops
— inputs
(erzz_le rH21_H12| + |rH21_H11 + erz_Hu')' nﬁgnubr(e)rngf 3 7 11 15
@ — _ 1+1+1 24 (62) 32 (146) 40 (254) 48 (326)
PH=H |(|erz*Hzl R PR LT errleD + 24+2+1 54 (92) 70 (184) 86 (300) 102 (380)
(LT P I S [ ORI o O ) 3+3+1 86 (124) 110(224) 134(348) 158 (436)
2272 21" 2 2 27T 4+4+1 122 (160) 154 (268) 186 (400) 218 (496)
(TR o (YT b R (PP (PRI 5+5+1 162 (200) 202 (316) 242 (456) 282 (560)
6+6+1 206 (244) 254 (368) 302 (516) 350 (628)
(LTI FTRRTIN B ol | (PIRTI of SR )| 7+7+1 254 (292)  310(434) 366 (580) 422 (700)
8+8+1 306 (344) 370(484) 434 (648) 498 (776)
- 9+9+1 362 (400) 434 (548) 506 (720) 578 (856)
5. Determining the Network Structure 10+10+1 422 (460) 502 (616) 582 (796) 662 (940)

The number of adjustable parameters of the neural network

is determined by the number of hidden units and by the size of TABLE 3. Standardized Errors (kcal/mol) for Recall and

Prediction after Training for 20 000 Cycles As Determined

the input vector: by Training of Networks with Different Numbers of Neurons
and Input Data. The CPU Time Refers to the Network
n=in+1D+ili +1D+(+1 10 Training (Time in Minutes on an SGI Indigo 4000
U )+iC )+ ) (10) Workstation)

In this equationn is the number of adjustable parametéris, neurons _ weights CPUtime recallerror  prediction
the number of neurons in the first hidden lay®iis the number 3 Inputs
of input parameters, arjds the number of neurons in the second é 23 232 1%-%2 13-?3
hidden layer. For example, a network that processes 11 input ¢ 56 346 518 556
parameters with five neurons each in the first and second hidden 7 92 487 493 575
layer and one output neuron has altogether 96 parameters (also 9 136 644 4.69 5.11
called weights and biases). We refer to the size and structure 7 Inputs
of the network as “5-5+1", or, in general, I+j+1". 1 12 95 11.74 11.85

For optimal results, it is important to choose a reasonable 3 40 235 4.58 4.75
number of neurons and inputs. Too many neurons will cause ? lzg E% g-gé g-zg
the data set to be “memorized” (the so-called overtraining 9 172 618 353 366

effect). On the other hand, a network with too few neurons
may be insufficient to extract all information from the data set. 11 Inputs

In practice one has to try different network sizes and monitor é ég %é‘i’ 1%'3 1}83
the prediction capability and the recall error before deciding 5 96 376 3.21 3.32
on the optimal number of neurons. Table 2 lists the number of 7 148 520 3.07 3.22
floating-point operations for some different network sizes and 9 208 667 2.59 2.69

different sizes of the input vector, and Table 3 shows the 15 Inputs

corresponding CPU times. 1 20 122 11.08 11.25

Each network was trained for 20 000 back-propagation cycles 3 64 265 3.83 4.00
using the method of immediate error correction (that means the ? %g ggg g-ég g ig
error correction for all input data is done at once). For 9 244 688 251 266

simplicity, all networks had the same number of neurons in the
first and second hidden layer. As test cases, we trained networks

with the preprocessegipe 1plustype 2conformations. Points  overtraining effect of networks with only three and seven inputs
with energies higher thasr100 kcal/mol were removed since  should be mentioned.

their probability is negligible. Half of the remaining data (about
6600 points) was used for network training. The other half was
then used in a jackknife test to calculate the prediction error
which was examined after each back-propagation cycle in order
to recognize a possible overtraining effect.

Missing information about the spatial conformation of the
examined system necessarily leads to inaccurate reproduction
of the energy, but as can be seen from the figures, this effect is
gradual. For example, if only the three distances @b, Al—

2 1)— (2 i i
Table 3 shows the capacity of recalling and predicting O®, and OY—-0® are used, the network has no information

energies, respectively. Since the networks are all relatively 200Ut the positions of the hydrogens and subsequently even a
small, the error of prediction and the error of recall normally '2r9€ network fails to correctly reproduce and predict conforma-
decrease with increasing number of neurons. One can see thations that differ only in the hydrogen positions. This might
too few neurons are not able to extract the hidden information Not be a serious problem if one is only interested in the repulsive
accurately; on the other hand, too little information about the Parts of the three-body problem because, as mentioned before,
conformation of the examined system disables exact differentia- these conformations do not strongly depend on the hydrogen
tion between similar conformations. It can be seen that a positions. For the fitting of the attractive parts of the potential
network with four or five neurons in each hidden layer is a (thetype 2data) the relative orientations are important, however.
good compromise between error and computational effort and With 11 interatomic distances the system is fully defined and
that the behavior of the prediction error is nearly similar to that the network accurately reproduces the energies. The use of all
of the recall error. As an exception, a slight tendency to an 15 interatomic distances does not improve the results any more,
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Figure 3. Correlation analysis for the analytical three-body potential
(a) and the network potential trained witype 1data (b). Because no X

information about attractive conformations is present, the NN potential 4

fails for t 2 i d th lytical .
alls for type zenergies, as does the analytical one Figure 4. Contour plots of the three-body energy surfacetygfe 1

. . . . . conformations (&) calculated using the analytical potential and (b) by
because it contains redundant information. Hence we decided, (s+5+1) network trained only with these conformations. In (b) the

to use a -5+1 network with 11 inputs for the subsequent MC  repulsive parts oftype 1 conformations as well as some slightly
simulations. attractive conformations dype 1are reproduced well. For both (a)
and (b) the energy is a function only of the distances of the Ain
to the oxygen atoms of the water molecules and the angle formed by
these distance vectors.

The simulation results presented here are best understood if
we first look at the differences of the applied potential functions. network trainings is shown in Figure 4b. The main difference
Let us briefly reexamine the analytical potential function. Figure between the upper and lower parts of Figure 4 occurs for
3a shows that the repulsive parts of the three-body interactionconformations where both water molecules lie on opposite sides
(the upper right quadrant) are fairly well reproduced but that of the Al ion. Here the NN potential is more repulsive than
the potential function fails for the attractiveyfe 9 interactions, the analytical one (Figure 4a). More contour lines in the low-
which are caused by the interaction of “hydrogen-bonded” water energy than in the high-energy regions were drawn to show
molecules in different hydration shells with-&\I—0O angles this more clearly in the figures. An examination of the ab initio
less than 58 Formula 7 has only three argumentgAl —0y), data points shows that the NN potential reproduces them more
r(Al—0y), andd(O—Al—0O)—and the resulting energy surface faithfully and that the functional form of eq 7 leads to a nearly
is rather simple. Corresponding to Figures 3a and 3b, in Figure vanishing three-body potential forl(O—AI-0) = 180,
4a and 4b two-dimensional subsets of the energy surface withwhereas the real one has a minimum but does not vanish.
one water molecule at a fixed position are shown. The network Figure 3b shows the same correlation for the NN potential
surface generated using the sary®é¢ ) conformations and as is shown in Figure 3a for the analytical one. The regions
with r(Al—=0y), r(Al—0,), andr(0;—0,) used as input for the  with energies in excess of 100 kcal/mol are not reproduced,

6. Results: The Final Potentials
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since the data threshold was set to this value. Extremely T T T T
repulsive energies have only little importance during simula- \
tions; on the other hand, the reduction of the energy range lowers (a)

the amount of neurons needed for accurate energy reproduction. [~
The low overall quality of the fit is again caused by the wrong
reproduction otype 2energies. There is no difference between
thetype landtype 2energy surfaces of the neural network, a
consequence of the number of input parameters. The network
has no further information about strongly attractive conforma-
tions. Since the input data lack information aboutl® and
H—H orientations or distances, the network fails to reproduce
type 2energies and their contour plots would therefore be similar
to Figure 4b.

If on the other side botllype 1andtype 2conformations
with a fully defined data set (11 inputs, includingAD, O-0,
O—H, and H-H distances) are used, the energy surface changes
in regions of attractive three-body interactionBype landtype
2 energy surfaces calculated using this network are not alike,
as shown in Figure 5Type 2conformations have minima in
the region of G-H hydrogen bonding. In contrastype 1
conformations show a minimum foCy, symmetry with
bifurcated hydrogen bonds. The correlation analysis (Figure
6) underlines the accuracy of the fit. It should be mentioned
again that it would probably be quite difficult to find an
analytical function with the same properties.

7. Monte Carlo Simulations
Details of the Simulations. To demonstrate our approach,

Monte Carlo simulations were carried out with a code origi- ¥y
nating from the program CARLOG$adapted and augmented ~&
by the neural network and the three-body routines. For the

H,O—H.0O interactions, the MCY potenti&lwas used. The o <>)
Al—H,0 pair interactions were taken from ref 14:

V, _olkcal/mol] = >
r

266001 exp{-3.89948) (11)

32?.01+ 38.43+

r2

287.458 exp(-0.35461) (12)

—65rS.02_ 597.12,

V, _ylkecal/mol] =

2 4
For the HO_A',_Hzo t,hree'bOdy interactions, either the Figure 5. Contour plots of the three-body energy surface of a fully
analytical potential function 7 or one of our neural network rained (withtypes 1+ 2 conformations) network with respect to the
potentials was used. reproduction oftype 1(a) andtype 2(b) energies. Both the attractive

The basic cube contained 200 water molecules and one cationand the repulsive conformations are reproduced accurately.

The examined A" ion was fixed in the middle of the cube

with a side length of 18.185 A. Periodic boundary conditions A cutoff parameterre = 5 A was used. After 2x 10°
were used. This represents a Ora&\I(Ill) salt solution. The  €quilibration cycles & 10° conformations were sampled. The
simulation temperature was set to 300 K. results were collected every 600 moves.

Four simulations were carried out: (a) only pair potentials ~ Results of the Simulations. We now compare some
were used for all interactions. These results are provided for representative data extracted from the statistics of the Monte
comparison; (b) a simulation where the analytical three-body Carlo runs. The hydration shell structure of the cation was
potential 7 was used for #—AI3—H,0 interactions is calculated in terms of radial distribution functiorggy(r), for
included since no simulations with this potential have been the ion—-oxygen and ior-hydrogen distances and the corre-
published yet; (c) the NN potential trained with only the sponding running integration numbergy(r):
repulsive fype 1 three-body interactions and (d) the NN
potential trained with repulsive and attractive interactidppe n aﬂ(r) = 4ap, ﬁ) rg aﬂ(r)rz dr (14)

1 + type 9 were used.
The three-body interactions were smoothly switched off at

. ; ; e . wherepg is the number density of the atoms of tyfe nqs(r
large distances using a function similar to the one in ref 9. Po y YBE Nos(r)

up to the first minimunmRy,; in g(r) gives then the number of
. 4 4 coordinating atomg around atomx. The results are collected
Eap = Egn(1 — exp(0.5(; — ry)))(1 — exp(0.5(; — 1)) in Table 4 in the following order: the results of simulation (b)
(13) using pair potentials and the analytical three-body function, the
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Figure 6. Correlation plot for the fully trained network. A good

correlation for repulsive as well as for attractive parts of the interaction

is now obtained.

TABLE 4: Values of the Radial Distribution Functions
gop(r) for the First Two Hydration Shells of Al3*; rp,; and
rmz are the Distances (in &) Whereg,; Has Its Maximum.
Rmi Is the Distance of the First Minimum, gos(Rmi) Is the
Value of the Corresponding Radial Distribution Function,
and neg(Rmi) Is the Average Number ofo. and g at the

Minimum Distance Ry

Analytical Three-Body Potential

o B rm Gap(rmi) Rmi Oup(Rmi) Nog(Rmi) Tm2  Gap(rm2)
Al O 193 2631 218382 0 6 419 592
Al H 263 1011 316380 O 12 491 239
O O 281 2.62 3.47 0.87 498 406 1.11
O H 191 115 256 0.24 190 334 166
H H 247 132 312 0.84 591 386 1.14
NN PotentialType 1
a B Im Gap(rm) Rumi Gup(Rm) Nop(Rmi) Tm2  Qup(Tm2)
Al O 198 2893 224387 O 6 432 528
Al H 265 1053 315375 O 12 495 238
O O 284 254 356 0.97 561 433 1.04
O H 192 1.08 250 0.27 182 334 162
H H 248 1.37 3.10 0.84 6.93 387 1.13
NN PotentialType 1+ 2
& B Tm Gop(rm)  Rmi Gap(Rm) Mop(Rmi) — rm2  Gap(rma)
Al O 191 21.74 229352 O 6 3.90 5.84
Al H 262 832 320375 0 12 4.35/4.40 1.95/2.01
O O 285 236 3.68 0.98 6.25 4.16 1.06
O H 192 0.99 253 0.28 183 351 1.50
H H 246 1.42 3.07 0.79 6.61 3.81 1.23
Analytical Two-Body Potential Only
o B Tm Gup(rm) Rmi  Gop(Rm) Nop(Rmi) Tmz  Qop(rm2)
Al 02 188 2641 246 0 8 4.04 2.58
Al H2 260 11.69 3.31 0.06 16 4.55 1.75
O O 284 248 3.47 0.87 249 424 1.09
O H 194 1.09 255 0.28 196 3.33 1.63
H H 248 1.33 3.05 0.84 6.52 3.81 1.14
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Figure 7. (a) Radial distribution functions of AlO (dashed line) and
Al—H (solid line) from the simulation with a neural network potential
(5+5+1) trained with dataypes 1+ 2 (MC simulation (d)); (b) using
only pair potentials (MC simulation (a)).

Just like with the analytical three-body potential (b), the NN
potential functions ensure a coordination number of 6 within
the first hydration shell around Af; this agrees with the
experimentally determined valde. The position of the maxi-
mum of ga—o changes from 1.93 (a) to 1.98 A (c) because of
its more repulsive character for the conformations where the
O—AI—-0 angle is nearly linear. Applying the neural network
trained withtype 1+ type 2conformations (d), the AtO
distance decreases to 1.91 A. This reflects the average influence
of the repulsive effects of water molecules within the same
hydration shell and the attractive interaction if two water
molecules lie within 50 and in different shells. The water
molecules of the first and second hydration shell remain well

A small maximum appearing between the listed first and second gseparated during all simulations. Figure 7a shguyso(r) and

14.

results of simulations applying neural potentialstyfe 1(c)

andtype 1+ type 2(d), and the results of simulation (a) using of the cationic hydration shell.

only pair potentials.

maximum includes one water molecule. This fact is explained in ref ga—n(r) together with their integration numbers for this

potential. For comparison, the corresponding curves for the pair
potential simulation (a) are included in Figure 7b.
We have analyzed a few other properties that are characteristic
For comparison, the pair
Figure 8a shows the

potential data are also given.
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5r ( ) Figure 9. O—O0 radial distribution function for the subset of water
molecules in the first two hydration shells of%Alfor the NN potential
simulation c (solid line) and the pair potential simulation a (dashed
L line).
4
shell from 2.69 A (a) to 2.53 A (d) and a much more structured
distribution in the latter case that can be explained by the less
at crowded hydration shell in the same way as for the angular
functions discussed above.
ok 8. Conclusion and Outlook
We have shown that the approach of fitting intermolecular
potentials with neural networks is a possible alternative to
1t standard fitting procedures for three-body interaction energies.
As a real-world example, the-©AI—O three-body interactions
in the ART/H,O system were used. The major advantage and,
i at the same time, disadvantage is that there are no restrictions
0 20 4 60 8 100

o | degree impo§ed by the particular mathematical form pf the potential
function. A 5+5+1 network should be sufficient for all
Figure 8. Distribution of the angle between the iepxygen distance  potential functions between three rigid bodies. The employed
vector and the dipole vector of water molecules in the first hydration hack-propagation algorithm with adaptive learning ensures fast
shell for the NN potential simulation c (solid line) and the pair potential o,y 456 results with a better ability to interpolate and predict
simulation a (dashed line) (a) and distribution of the @8 angle .
obtained with the neural potential for the same simulations (b). the pqtentlal energy of _the system than offered by standard
o ] analytical potential functions.
distribution of the angle between the ieoxygen vector and It should be kept in mind, however, that neural networks are
the dipole vector of water molecules in the first hydration shell only one class of functions to model arbitrary hypersurfaces as
for the pair potential simulation (dashed line) and the neural ¢josely as desired. Other such functions include, for example,
potential simulation (solid line). Although the water molecules  certain polynomials, most prominently splines. The relative
in the latter case are much less tightly bound, the distributions aqvantages and disadvantages between these possible candidates
are similar with a maximum close to 180This indicates that,  gre not yet clear, but the current study suggests that feed-forward
due to the decrease in the number of water molecules and theneyral networks have no special “predictive power” for sparsely
slight increase in A+O distance, these water molecules have gsampled parts of the energy hypersurface.
more space and obtain favorable positions. For the same reason, The ab initio calculations were carried out using the quantum
the distribution of the &H---O hydrogen bond angle (Figure  chemical programs HOND® and Gaussian 90/92. The
8b) from the simulation with the neural network potential shows network training was performed using Matlab %.%vith the
a much sharper maximum around 18ompared with the  neyral network toolbox. The simulations were carried out with
simple pair potential simulation. the Fortran programs mentioned in the text. Coordinates,
Concerning the second hydration sphere, the position of the gpergies of the data points, and the network parameters are
second maximung(r) in simulation (c) changed to 4.32 A from  yailable from the authors upon request as a technical Fdport

4.19 A determined in the simulation with the analytical potential containing a more detailed description of the neural networks
(b). The NN potential in simulation (d) reduced its value t0 z1d of the simulations.

3.90 A as a result of the attractive interactions now included

between water molecules of different hydration shells. dds Acknowledgment. Support from project 4897 of the Jubi-
radial distribution function (Figure 9) shows a decrease of the laumsfonds of the Austrian National Bank, the Austrian FWF
average ©@-O distance from the first to the second hydration (project P10106-MOB), and the EEC SCIENCE project SC1
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